LETTERS TO THE EDITOR

Semiconducting Li₂MgCu₃O_{5+x} and Li₂CaCu₃O_{5+x} with Face Centered Cubic Metal Lattice

J. HAUCK, K. BICKMANN, B. BISCHOF, AND S. IPTA

Inst. f. Festkörperforschung, KFA Jülich, D-5170 Jülich, Federal Republic of Germany

Communicated by W. R. Robinson, July 15, 1988

Semiconducting Li₂MgCu₃O_{5+x} and Li₂CaCu₃O_{5+x} were obtained in three modifications from Li₂CuO₂/MgCu₂O₃ or CaCu₂O₃ mixtures. The Li/Mg or Li/Ca sublattices of γ -phases are disordered in tetragonal distorted NaCl lattices (a = 399-401 pm, c/2 or c/4, resp. 442–443 pm). The phase transitions to α and β phases depend on oxygen partial pressure indicating O atoms ordering. © 1988 Academic Press, Inc.

The crystal structures of superconducting La_2CuO_4 (1, 2), $Ba_2YCu_3O_{6.5+x}$ (3), and $Ca_2Sr_4Bi_4Cu_4O_{16+x}$ (4) consist of M =La₂Cu, Ba₂YCu₃, or Ca₂Sr₄Bi₄Cu₄ metal lattices with structures of ordered body centered cubic (bcc) alloys, e.g., with MoSi₂ alloy structure of La_2Cu (5). The oxygen atoms are on interstitial octahedral sites similar, e.g., to H in VH_x or $FeTiH_x$ interstitial alloys (5). We have prepared new quaternary oxides $Li_2MgCu_3O_{5+x}$ and Li_2 $CaCu_3O_{5+x}$ with small metal atoms Li, Mg, and Ca on Au positions of CuAu alloy structure, which is an ordered face centered cubic (fcc) alloy. The oxygen atoms are on interstitial octahedral sites similar to H atoms on PdH_r interstitial alloys. The structures consist of tetragonal layers as in La_2CuO_4 , $Ba_2YCu_3O_6$, or $Ca_2Sr_4Bi_4Cu_4O_{16}$ (Fig. 1). Each fcc layer contains two M atoms, each bcc layer one M atom. Therefore the lattice constants (and Cu-O bond distances) are increased in ordered fcc M0022-4596/88 \$3.00

structures, though Li, Mg, and Ca atoms are smaller than Ba, Y, Bi, and La atoms. All compounds investigated so far display semiconducting behavior, probably because of the increased Cu-O bond distances.

The $Li_2MgCu_3O_{5+x}$ and $Li_2CaCu_3O_{5+x}$ phases with $-0.7 \le x \le 0.4$ were obtained from mixtures of Li_2CuO_2 (6) and MgCu₂O₃ (7) or $CaCu_2O_3$ (8) by 10 hr annealing at 960-1000°C. Both compounds occur in three modifications with two phase transitions depending on oxygen partial pressure as was determined by X-ray diffraction at room temperature after quenching in liquid nitrogen, by thermogravimetric analysis and differential thermal analysis (Fig. 2). The phase transition temperatures of Li₂MgCu₃O_{5+x} (9) are about 100°C ($\beta \rightarrow \gamma$) or 400°C ($\alpha \rightarrow \beta$) lower than in Li₂Ca Cu_3O_{5+x} . The oxygen sublattice of Li₂ MgCu₃O_{5+x} is disordered in β phase, the Li_2Mg sublattice disordered in γ phase. The

Copyright © 1988 by Academic Press, Inc. All rights of reproduction in any form reserved.

Y-Li8/3 Mg4/3 Cu4 05,7 Li16/3 Ca8/3 Cu8 013,3(+X)

FIG. 1. Schematic drawing of $Li_2MgCu_3O_{5+x}$ and $Li_2CaCu_3O_{5+x}$ structures with fcc metal lattice compared to $Ca_2Sr_4Bi_4Cu_4O_{16}$, La_2CuO_4 , and $Ba_2YCu_3O_{6(+1)}$ structures with bcc metal lattice. (• and O, Metal atoms at projection height 0 and 0.5, respectively.) Only one-half of $Li_2CaCu_3O_{5+x}$ and $Ca_2Sr_4Bi_4Cu_4O_{16}$ structures is shown; m = mirror plane.

samples must be annealed for ~1 hr below the $\beta \rightarrow \gamma$ phase transition so that the Li₂Mg sublattice is ordered and the oxygen content can increase at 400–700°C. Otherwise the sample with low oxygen content decomposes at decreased temperatures to Li₂CuO₂, MgO, and Cu₂O. It is suggested that the oxygen content of one Cu plane increases in a manner similar to that in Ba₂YCu₃O₆₍₊₁₎ structures, so that the coordination number of these Cu atoms changes from twofold at low oxygen content ($x \sim$ -0.75) to fourfold at high oxygen content ($x \sim$ 0.5). Buerger precession photographs on γ -Li₂ CaCu₃O_{5+x} platelets (Fig. 3) show superstructure reflections corresponding to $c \approx$ 4*a* (NaCl). The strong reflections of X-ray powder pattern are as in tetragonal distorted NaCl lattice with lattice constants similar to γ -Li₂MgCu₃O_{5+x} (Fig. 1). The determination of superstructure reflections from powder patterns of α and β phases is somewhat difficult because of the three modifications and of impurities with crystal structures related to NaCl lattice (CaO, Ca Cu₂O₃, Li₂CuO₂).

The Cu–O–Cu bond distances *a* or $a' = a/\sqrt{2}$ (Fig. 1) in tetragonal planes of Li₂MgCu₃O_{5+x} (399–405 pm) and Li₂Ca Cu₃O_{5+x} (401 pm) are larger than in La₂ CuO₄ (381 pm), Ba₂YCu₃O₆₍₊₁₎ (~386 pm), or Ca₂Sr₄Bi₄Cu₄O_{16+x} (382 pm). The *c'* values perpendicular to tetragonal planes are increased by ~10% in γ -Li₂MgCu₃O_{5+x} and γ -Li₂CaCu₃O_{5+x} and La₂CuO₄, but are only 2%

FIG. 2. Phase transitions of α , β , γ -Li₂CaCu₃O_{5+x} at different oxygen partial pressures of O₂/Ar mixtures at 1 bar total pressure.

FIG. 3. Scanning electron micrograph of y-Li₂CaCu₃O_{5+x}.

larger than a' values in α -Li₈Mg₄Cu₁₂O₂₂ and Ba₂YCu₃O₆ (Fig. 1).

References

- 1. P. M. GRANT et al., Phys. Rev. Lett. 58, 2482 (1987).
- 2. J. M. LONGO AND P. M. RACCAH, J. Solid State Chem. 6, 526 (1973).

- 3. A. W. HEWAT et al., Solid State Commun. 64, 301 (1987).
- 4. J. M. TARASCON et al., preprint.
- 5. J. HAUCK, D. HENKEL, AND K. MIKA, *Phys. C* 153-155, 1173 (1988).
- 6. R. HOPPE AND H. RIEK, Z. Anorg. Allg. Chem. **379**, 157 (1970).
- 7. H. DRENKHAHN AND H. MÜLLER-BUSCHBAUM, Z. Anorg. Allg. Chem. 418, 116 (1975).
- 8. C. L. TESKE AND H. MÜLLER-BUSCHBAUM, Z. Anorg. Allg. Chem. 370, 134 (1969).
- 9. J. HAUCK et al., Phys. C 152, 461 (1988).